To date, scientists have confirmed the existence of more than 900 exoplanets circulating outside our solar system. To determine if any of these far-off worlds are habitable requires knowing an exoplanet’s mass — which can help tell scientists whether the planet is made of gas or rock and other life-supporting materials.
“Knowing the mass is a very important piece of the puzzle,” says Mark Swain, a research scientist at NASA’s Jet Propulsion Laboratory. “If you found the composition of the planet was almost certainly solid, that required a significant amount of water mixed in with a silicate core, and you knew it had habitable zone-type temperatures, you might make a good case for in-depth studies of that world, because it has what seems like the ingredients for a habitable planet.”
But current techniques for estimating exoplanetary mass are limited. Radial velocity is the main method scientists use: tiny wobbles in a star’s orbit as it is tugged around by the planet’s gravitational force, from which scientists can derive the planet-to-star mass ratio. For very large, Neptune-sized planets, or smaller Earth-sized planets orbiting very close to bright stars, radial velocity works relatively well. But the technique is less successful with smaller planets that orbit much farther from their stars, as Earth does.
Now scientists at MIT have developed a new technique for determining the mass of exoplanets, using only their transit signal — dips in light as a planet passes in front of its star. This data has traditionally been used to determine a planet’s size and atmospheric properties, but the MIT team has found a way to interpret it such that it also reveals the planet’s mass. . . .
Continue Reading . . .
See Also:
The Strange Planets of 'Fomalhaut' --A Spectacular Alien Star System
Astronomy Round-Up: Super-Earths, Broken Satellites, and Rogue Planets
Earth-Like Planet Found in Our Backyard
SHARE YOUR UFO EXPERIENCE
No comments :
Post a Comment
Dear Contributor,
Your comments are greatly appreciated, and coveted; however, blatant mis-use of this site's bandwidth will not be tolerated (e.g., SPAM etc).
Additionally, healthy debate is invited; however, ad hominem and or vitriolic attacks will not be published, nor will "anonymous" criticisms. Please keep your arguments "to the issues" and present them with civility and proper decorum. -FW